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Abstract 
 
Using new game events and location data, we introduce a player performance assessment system 
that supports drafting, trading, and coaching decisions in the NHL. Players who tend to play in 
similar locations are clustered together using machine learning techniques, which capture 
similarity in styles and roles. Clustering players avoids apples-to-oranges comparisons, like 
comparing offensive and defensive players. Within each cluster, players are ranked according to 
how much their actions impact their team’s chance of scoring the next goal.  Our player ranking is 
based on assigning location-dependent values to actions. A high-resolution Markov model also 
pinpoints the game situations and rink locations in which players tend to do actions with 
exceptionally high/low values.  
 

1. Introduction 
 
Player comparison and ranking is a very difficult task that requires deep domain knowledge. The 
difficulty is not only in defining appropriate key metrics for players, but also in finding a group of 
players who have similar playing styles. From the scouting perspective, a scout has to watch 
multiple games of a player to come up with a conclusion about the skills and style of a young talent. 
However, it is not possible for the scouts to watch all the games from all the leagues across the 
world. In this study, we propose a purely data-driven approach to simulate the way that the 
management and scouts evaluate players. This makes it possible, in principle, to apply our 
algorithm across multiple leagues (e.g. other professional or junior leagues) and find undervalued 
players. The proposed approach follows the intuitive insights to group players and develops 
advanced game models to assess players’ skills. More specifically, this work develops statistical 
machine learning models to leverage the location information of a detailed dataset of NHL games in 
order to cluster and rank players based on their style and impact on the game outcome.  
 
A new dataset provided by SPORTLOGiQ contains a rich set of player actions and game events along 
with their precise locations (x-y coordinates). In this paper, we have used the location information 
to first generate clusters of players who are similar and then compute a Scoring Impact (SI) metric 
based on the players’ actions at different locations. The rationale behind clustering players before 
ranking them is intuitive; for example no one ever compares a defenseman to a forward; for the 
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purpose of this exercise, a forward should be compared to a forward while a defenseman should be 
compared to a defenseman. There are also some studies that point out this issue; for example it is 
suggested in [1] that player performance metrics are mostly meaningful for comparing similar 
players. Although this is trivial for anyone who knows hockey, building a purely data-driven 
approach to generate clusters of players without using any prior information is not an easy task. To 
build the player clusters, we use the location pattern of the players, i.e., where they tend to play. 
This generates clusters in an unsupervised fashion, which results in groups of players with similar 
styles and roles.  
 
Once the clusters are formed any metric can be developed to rank the players and evaluate their 
impact on the game outcome. Here we focus on measuring how much a player’s actions contribute 
to the outcome of the game at a given location and time. This is performed by assigning a value to 
each action depending on where and when the action takes place using a Markov decision process 
model. For example, the value of a pass depends on where it is taken and it has to be rewarded if it 
ends up in maintaining the puck possession. Once the values for the actions and game events are 
assigned, players can be ranked according to the aggregate value of their actions, and compared to 
others in their cluster. In this study, the value of a player’s action is measured as its impact on his 
team’s chance of scoring the next goal; the resulting player metric is called his Scoring Impact. We 
have chosen the scoring the next goal as the end goal of a sequence of game events because it can be 
clearly defined as a measurable objective for a team. However, the developed model is not 
necessarily dependent on this outcome and any other event can be used as the end state of the 
Markov process.  
 
The experimental results indicate that the Scoring Impact correlates with plausible alternative 
metrics such as a player's total points and salary. However, SI suggests some improvements over 
those metrics as it captures more information about the game events. We illustrate the results by 
identifying players that highly impact their team scoring chances, yet draw a low salary compared 
to others in their cluster. We discuss about the advantages and shortcomings of our modeling 
approach in the following sections. 
 

2. Markov Game Models: Previous Work and Our Approach 
  
The Markov model-based approach to valuing decisions and ranking players was developed for 
basketball by Cervone et al. [4], who note that their approach extends to any continuous-flow sport. 
The details of our NHL model are quite different from their NBA model, mainly because the NBA 
tracking data from SportVU include the positions of all players. The SPORTLOGiQ data used in this 
work include the location of the puck events. In an earlier work on hockey game models, Routley 
and Schulte [5] developed a Markov model based on the publicly available NHL data, using the zone 
of an action as the only location information. Other NHL Markov models assessed player 
performance based on goals and penalties only [1, 6]. Depending on the outcome of interest, a 
Markov model can be used to assess the impact of a player’s actions on outcomes of interest other 
than goals, such as wins [1, 7] and penalties [5]. Identifying player types by spatial action patterns 
was inspired by the work of Miller et al. [8] on NBA player types. Their work was developed solely 
based on shot locations and applied matrix factorization with Poisson point processes rather than 
clustering with discrete-region heat maps. 
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In the current work, player clustering is done by the use of the affinity propagation algorithm [2]. It 
groups players by clustering heat maps that represent their location patterns. To compute the 
probability that a team scores the next goal given the current state of the game, a Markov Decision 
Process is developed to model hockey games [3]. A Markov model is a powerful representation of 
game dynamics that has recently been shown to be effective for assigning values to actions and 
evaluating player performance [1, 4, 5]. The model defines the probability of a game continuation, 
given a current game state. For instance, given a current game state, it assigns a probability to a set 
of trajectories that result in an ending state, such as scoring the next goal. Our Markov game model 
consists of over 100,000 transition probability parameters. As opposed to approaches for player 
performance assessment that are based on using aggregate action counts as features, our model-
based method has several advantages, including: 

 Capturing the game context: the states in the model capture the context of actions in a game. 
For example, a goal is more valuable in a tied-game situation than when the scorer's team is 
already four goals ahead [1]. 

 Look-ahead and medium-term values: modeling game trajectories provides look-ahead to 
the medium-term consequences of an action. Looking ahead to the medium-term 
consequences allows us to assign a value to every action. This is especially important in 
continuous-flow games like hockey because evident rewards like goals occur infrequently 
[4]. For example, if a player receives a penalty, the likelihood increases that the opposing 
team will score a goal during the power play at some point, but this does not mean that they 
will score immediately. 

 Player and team impact: The aggregate impact of a player can be broken down into his 
average impact at specific game states. Since game states include a high-level of context 
detail, the model can be used to find the game situations in which a player’s decisions carry 
especially high or low values, compared to other players in his cluster. This kind of drill-
down analysis explains, and goes beyond, a player’s overall ranking. We provide what to our 
knowledge are the first examples of drill-down analysis for two players. (Taylor Hall and 
Erik Karlsson, who are the most highly ranked in their cluster). While this paper focuses on 
players, the same approach can be used to cluster and analyze the performance of lines and 
teams.  

 

3. Hockey Dataset 
 
We make use of a new proprietary dataset from SPORTLOGiQ. The data are generated from the 
videos using computer vision techniques including player tracking and activity recognition. Table 1 
shows the dataset statistics for the 2015-2016 NHL season. The dataset consists of play-by-play 
information of game events and player actions for the entire season.  Every event is marked with a 
continuous time stamp, the x-y location, and the player that carries out the action of the event. The 
play-by-play event data records 13 general action types (shown as Table A- 1 in the appendix). 
Table 2 shows an example play-by-play dataset. The table utilizes adjusted spatial coordinates 
where negative numbers refer to the defensive zone of the acting player, positive numbers to his 
offensive zone. To illustrate, Figure 1 shows a schematic layout of the ice hockey rink. The units are 
feet. Adjusted X-coordinates run from -100 to +100, and Y-coordinates from -42.5 at the bottom to 
42.5 at the top, and the origin is at the ice center.  
 

4. Location-Based Player Clustering 
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Hockey is a fast-paced game where players of all roles act in all parts of the ice hockey rink. Our 
player clustering method is based on each player's distribution of action locations across the rink. 
To represent the action location pattern of a player, we divide the rink into a fixed number of 
regions, as shown in Figure 1. This division uses four horizontal and three vertical regions, 
corresponding to the traditional center, left and right wings.  For each player, the region frequency 
is the total number 

Table 1. Dataset statistics 
for the 2015-2016 season. 

Table 2. Sample play-by-play data 

Number of 
Teams 

30 

Number of 
Players 

2,233 

Number of 
Games 

1,140 

Number of 
Events 

3.3M 

 

 

gameId playerId Period teamId xCoord yCoord Manpower Action 
Type 

849 402 1 15 -9.5 1.5 Even Lpr 
849 402 1 15 -24.5 -17 Even Carry 
849 417 1 16 -75.5 -21.5 Even Check 
849 402 1 15 -79 -19.5 Even Puckprot 
849 413 1 16 -92 -32.5 Even Lpr 
849 413 1 16 -92 -32.5 Even Pass 
849 389 1 15 -70 42 Even Block 

 

 
Figure 1. Rink divided into 12 regions for player heat maps. 

 
of actions he has performed in a region, divided by the total number of his actions. Converting 
counts to frequencies avoids conflating the level of a player's activity with the location of his 
actions. We apply the well-known affinity propagation algorithm [2] to the player frequency vectors 
to obtain a player clustering. The appendix provides technical details on the affinity propagation 
algorithm. Affinity propagation produced nine player clusters which seem to be correct: four 
clusters of forwards, four clusters of defensemen, and one cluster of goalies. It is interesting to note 
that the clustering is an unsupervised process. 
 
Figure 2 shows the 12-region activity heat map for Taylor Hall and Figure 3 represents the heat 
map for the cluster he belongs to. (Best viewed on-screen for color; darker red represents higher 
frequency, darker blue lower frequency.) Similarly, Figure 4 shows the heat map for Erik Karlsson 
and Figure 5 depicts the average heat map for Karlsson's cluster. The average heat map represents 
the average frequency of the game events which are happening in that region, over all players in the 
cluster. The heat maps show that Karlsson and other players in his cluster tend to play a defensive 
role on the left wing, whereas Hall and other players in his cluster play a more offensive role, 
mostly on the right wing. 
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Figure 2. Taylor Hall’s activity heat map. 

 
Figure 3. Activity heat map for Hall’s cluster. 

 

  
Figure 4. Erik Karlsson’s activity heat map. Figure 5. Activity heat map for Karlsson’s cluster. 

 

 
Figure 6. The learned clusters match the player categories of forward and defenseman. 

 
Table 3. Top 4 Players in Taylor Hall's and Eric Karlsson’s cluster, sorted by scoring impact per 20 minutes played 

Cluster Cluster Average 
Scoring Impact 

Name SI GP Goals Assists Passes TOI.pg Salary ($M) 

7 2.851 

Taylor Hall 4.775 81 26 39 320 19.204 6 
Pavel Datsyuk 4.675 60 14 33 159 19.655 7 
Evgeni Malkin 4.536 57 27 31 190 19.369 9.5 
Sidney Crosby 4.475 80 36 49 277 20.469 12 

4 3.181 

Eric Karlsson 6.093 77 15 66 303 28.975 7 
Kris Letang 4.888 71 15 51 168 26.945 7.25 

Alex Pietrangelo 4.831 73 7 30 202 26.305 6.5 
Tyson Barrie 4.696 78 14 36 163 23.200 3.2 
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It is important to compare the learned clusters with the known player types. Figure 6 shows that 
the clusters match the basic grouping into defensive players and forwards. We emphasize that the 
algorithm discovers this grouping only from the game event location information without being 
given any prior or explicit information about the player's official position. Forwards are commonly 
divided into centers, left wing players and right wing players. The learned forward clusters match 
this division to some extent. For instance, cluster 5 and 7 contain mainly but not only centers, 
cluster 6 contains mainly but not only left-wingers, and cluster 8 contains mainly but not only right-
wingers. It indicates that not only the clusters match the conventional player positions, but also 
they provide information beyond those predefined positions. As an example, Table 3 shows the top 
four players in Hall’s cluster and in Karlsson’s cluster along with their scoring impact (described 
below) and some standard metrics.  
 

5. The Markov Game Model 
 
A Markov model is a dynamic model that represents how a hockey game moves from one game 
state to the next. A sequence of state transitions constitutes a trajectory. The parameters of a 
(homogeneous) Markov chain are transition probabilities 𝑃(𝑠′|𝑠) where s is the current state and 𝑠′ 
the next state. Previous Markov chain models for ice hockey have included goal differential and/or 
manpower differential in the state space [1, 6, 9]. Then the transition probabilities represent how 
goal scoring and penalty drawing rates depend on the current goal and manpower differentials. 
This approach can measure the impact of those actions that directly affect the state variables, i.e., 
goals and penalties. Markov decision processes and Markov game models include both states and 
actions, which allows us to measure the impact of all actions. The parameters of our Markov game 
model are state-action transition probabilities of the form 𝑃(𝑠′,𝑎′|𝑠,𝑎) where a is the current action 
and 𝑎′ is the next action. The model therefore describes state-action trajectories as illustrated in 
Figure 9. 
 

 

5.1. Spatial Discretization 
Our Markov model represents the probability that a given action occurs at a given location on the 
rink. To model the action occurrence probability, we discretize the rink space into a discrete set of 
regions. One option for generating discrete regions is to use a fixed grid, such as the one shown in 
Figure 1. However, the problem with a fixed grid is that different types of actions tend to be 
distributed in different locations. For example, shots hardly ever occur in the defensive zone, 
whereas blocks often do. Therefore, using the same grid for shots and blocks is neither statistically 
nor computationally efficient. Instead, we learned from the data a separate discretization tailored to 
each action, by applying affinity propagation to cluster the locations of occurrences of a given action 
type. Figure 7 shows the resulting regions for Blocks, and Figure 8 for Receptions. In each figure, 

  
Figure 7. The learned regions for “Block” events Figure 8. The learned regions for “Reception” events 
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the cluster mean is shown with an occurrence label indicating how many actions are happening in 
each region. The figures also show the impact of the actions on scoring the next goal for each region, 
averaged over the game contexts. Those numbers are derived from the developed Markov game 
model.  
 

5.2. State and Action Spaces 
A state is a vector of values, one for each state variable, as shown in Table 4. An action event, a, is 
one of the 13 action types combined with two attributes: which team performs the action (Home or 
Away) and the action location where the action takes place. For instance, block(home,region3) 
denotes the event that the home team blocks the puck in the block-region 3 (see Figure 7). Figure 9 
shows a possible state-action trajectory, which Table 5 describes in play-by-play format. In our 
model the number of states is “17 x 3 x 4 = 204”, and there are 63 action-region pairs (see Table A- 
1 in appendix) which can be carried out by either the home team or the away team, for a total 
number of “63 x 2 = 126” action events.  
 

 

 
Table 4. State Variables and Values 
Notation Name Range 

GD Goal 
Differential 

[-8,8] 

MD Manpower 
Differential EV, SH, PP 

P Period [1,4] 
 

Figure 9. A possible state action trajectory in our Markov game model.  

 
Table 5. The state-action trajectory in play-by-play format. For quantities derived from the model see the text. 

 State Variables Action Parameters Quantities derived from Model 
Event Goal 

Differential 
ManPower 
Differential 

Period Team Action 
Type 

Region Transition 
Probability 

Conditional 
Value (Home) 

Impact 

0 0 Even 4 Home Carry 4 ---- 73% ---- 
1 0 Even 4 Home Pass 2 21% 71% -2% 
2 0 Even 4 Home Reception 5 3% 76% 5% 
3 0 Even 4 Home Shot 1 34% 86% 10% 

 
5.3. Parameter Estimation 
The key quantities in our model specify the joint state-action distribution 𝑃(𝑠′,𝑎′|𝑠,𝑎) that an action 
a occurs at the game state s, and is followed by game state s’ and action a’. Because the distribution 
of the next action and its location depends on the most recent action and its location, the action 
distribution represents spatial and temporal dynamics. For example, the transition probability of 
21% in the second row of Table 5 includes the probability that play moves from carry-region 4 to 
pass-region 2, given the current game context. We refer to a state-action pair as a game context, so 
P(s’,a’|s,a) models a context transition probability. Decomposing this probability as 𝑃(𝑠′,𝑎′|𝑠,𝑎) =
 𝑃(𝑠′|𝑎′,𝑠,𝑎) × 𝑃(𝑎′|𝑠,𝑎), we see that it combines two quantities of interest: (1) the state 
transition probabilities 𝑃(𝑠′|𝑎′,𝑠,𝑎) that describe how game states evolve given players’ actions. 
(2) The action distribution 𝑃(𝑎′|𝑠,𝑎) that describes how a random player acts in a given game 
context.   
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We estimate the action-state distribution using the observed occurrence counts 𝑛(𝑠′,𝑎′,𝑠,𝑎), which 
record how often action a’ and state s’ follows state s and action a in our dataset. For simplicity we 
slightly abuse notation and use n also for marginal occurrence counts, for example 𝑛(𝑠,𝑎)=
 ∑ 𝑛(𝑠′,𝑎′,𝑠,𝑎).𝑠′,𝑎′   The maximum likelihood estimates are computed as follows: 

 

𝑃(𝑠′,𝑎′|𝑠,𝑎)=
𝑛(𝑠′,𝑎′,𝑎,𝑠)

𝑛(𝑠,𝑎)
 

(1) 

The number of possible state-action quadruples is unmanageably large at over 600 million. 
However, the number of quadruples that occur more than zero times is only 112,590. The 
necessary computations for computing and storing the estimated values can be efficiently managed 
using appropriate data structures; for more details please refer to [7]. Our code is available on-line 
[10]. We next show how our Markov game model can measure the impact of all actions.  
 

6. Action Values and Scoring Impact 
 
In our model, the agents are a generic home team and a generic away team, not individual players, 
similar to previous Markov game models [1] for hockey. This is appropriate for the goal of assigning 
generic values to all action events. In this paper we use the Markov model to quantify how a 
player’s action, given a game context, affects the probability that his team scores the next goal. A 
similar approach can be followed to quantify the impact of actions on other outcomes of interest, 
such as winning the game [1, 7] and penalties [5]. A key feature of a Markov model is that it 
quantifies not only the immediate but also the medium-term impact of an action.  
For T = home or away, let 𝑃(𝑇 𝑠𝑐𝑜𝑟𝑒𝑠 𝑛𝑒𝑥𝑡|𝑠,𝑎) denote the probability derived from the model, that 
after action a, the team T scores the next goal, before the opposing team 𝑇. In the appendix we show 
how this probability can be computed using the dynamic programming algorithm. For a point in a 
game, it is possible that a play sequence ends with neither team scoring. Therefore another quantity 
of interest is the conditional probability that a team scores given that one of the two teams scores 
next. We refer to this as the conditional value of a game context for team T.  
 

𝐶𝑉𝑇(𝑠,𝑎) =
𝑃(𝑇 𝑠𝑐𝑜𝑟𝑒𝑠 𝑛𝑒𝑥𝑡 |𝑠,𝑎)

𝑃(𝑇 𝑠𝑐𝑜𝑟𝑒𝑠 𝑛𝑒𝑥𝑡 |𝑠,𝑎) + 𝑃(T̅ 𝑠𝑐𝑜𝑟𝑒𝑠 𝑛𝑒𝑥𝑡 |𝑠,𝑎)
 (2) 

The conditional value is an appropriate quantity for evaluating actions since the goal of an action is 
to improve a team’s position relative to their opponent. The impact of an action is defined as the 
extent to which the action changes the conditional value of the acting player’s team at a state.  
Figure 7 shows the impact of a “Block” by region, averaged over game contexts; ditto Figure 8 for 
“Receptions”. The scoring impact metric for a player is defined as their total impact over all their 
actions and formulated as follows: 
 

𝐼𝑚𝑝𝑎𝑐𝑡(𝑎′;𝑠,𝑎) =∑ 𝐶𝑉𝑇(𝑠
′,𝑎′)×𝑃(𝑠′|𝑎′,𝑠,𝑎)−𝐶𝑉𝑇(𝑠,𝑎)

𝑠′

 
(3) 

𝑆𝐼𝑖=∑ 𝑛𝑖(𝑎
′,𝑠,𝑎)×𝐼𝑚𝑝𝑎𝑐𝑡(𝑎′;𝑠,𝑎)

𝑎′,𝑠,𝑎

=∑ 𝑛𝑖(𝑠,𝑎)

𝑠,𝑎

×∑ 𝐼𝑚𝑝𝑎𝑐𝑡(𝑎′;𝑠,𝑎)×𝑃𝑖(𝑎
′|𝑠,𝑎)

𝑎′

 

(4) 
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where 𝑃𝑖(𝑎
′|𝑠,𝑎)=

𝑛𝑖(𝑎
′,𝑠,𝑎)

𝑛𝑖(𝑠,𝑎)
 is the action distribution for player i. The occurrence counts 

𝑛𝑖(𝑎
′,𝑠′,𝑠,𝑎) record how many times the game reaches the state s’ and player i takes action a’ after 

state s and a player (not necessarily i) took action a. The second expression for the scoring impact 
shows that the SI metric can be interpreted as the expected impact of a player given a game context 
(s,a), weighted by how often the player reaches the context. 
 
 
6.1. Correlation Analysis 
The SI metric shows a strong correlation with other important metrics, such as points, time on ice, 
and salary. This correlation increases by computing the metric for comparable players rather than 
all players. Table 6 shows the correlation between SI and time on ice (per game). For example, the 
correlation between SI and time on ice is 0.83 overall, and increases to 0.89 and 0.92 for the 
clusters shown in the table. The SI is also temporally consistent [1], i.e., a player’s SI metric in the 
first half of the season correlates strongly with his SI metric in the second half (𝜌 = 0.77). 
 

Table 6. Correlation between SI and TOI (per 20 min played) 

Cluster # All 1 2 3 4 5 6 7 8 
Correlation Coefficient 0.83 0.89 0.89 0.92 0.89 0.92 0.82 0.92 0.90 

 
6.2. Case Studies 
For our example clusters, we discuss the top-ranked player and some undervalued players. The 
appendix shows metrics for all players discussed. 
 
Taylor Hall’s cluster. This cluster, cluster number 7, comprises forwards only. Table 3 shows the 
top 4 players by scoring impact: Taylor Hall, Pavel Datsyuk, Evgeni Malkin, and Sidney Crosby, who 
all are known as excellent offensive players. Taylor Hall is recognized as a high calibre forward, 
placing him highly in the NHL fantasy rankings [11]. His goals-per-game metric is 0.32, which is 
excellent but behind for instance Malkin's at 0.47. This shows how our ranking is correlated with 
goals but also takes into account the value of other actions by the player. For instance, our ranking 
reflects that the total number of Hall's passes is 320, substantially more than Malkin's 190 passes. 
 
The highly ranked players with low salary in cluster 7 are Aleksander Barkov (rank 6, salary 
$0.925M) and Jack Eichel (rank 8, salary $0.925M). Both players are junior (first NHL season in 
2011 for Barkov, 2012 for Eichel). Barkov is viewed as having played a successful season and 
received from the Florida Panthers a six-year contract extension for $35.4M, a six-fold salary 
increase [12], which is consistent with our ranking. Eichel is a rising star [13]. Being in the same 
cluster as Hall suggests that Barkov and Eichel are strong prospects for replacing this senior 
forward. 
 
Erik Karlsson’s Cluster. This cluster comprises defense players only. Table 3 shows the top 4 
players by scoring impact. The top player in cluster 4 is Erik Karlsson. He has won the Norris 
Trophy twice for best all-round defenseman in the NHL. The NHL ranks him as the top defenseman 
for fantasy play in the 2016 season [14]. According to our SI ranking, John Klingberg draws a low 
salary in this cluster. Although he signed a contract with the Dallas Stars in 2011, he did not play a 
full NHL season until 2014-2015. After this season, he was recognized by an invitation to the NHL 
all-rookie team, which is consistent with our ranking. Being in the same cluster as Karlsson 
suggests that he is a strong prospect for replacing this senior defenseman. 
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6.3. Explaining the Rankings: Drill-Down Analysis 
In this section we illustrate how a player’s ranking can be explained by how he performs in specific 
game contexts. This breakdown makes the ranking interpretable because it explains the specific 
observations that led to the rating and pinpoints where a player’s effectiveness deviates from 
comparable players. Our basic approach is to find the game contexts in which a player’s expected 
impact differs the most from a random player in his cluster. We refer to this metric as the player’s 
added impact, Δ𝑖(𝑠,𝑎), computed as follows: 
 

E𝑗(𝑠,𝑎) =∑ 𝐼𝑚𝑝𝑎𝑐𝑡(𝑎′;𝑠,𝑎)×𝑃𝑗(𝑎
′|𝑠,𝑎)

𝑎′
 (5) 

 

Δ𝑖(𝑠,𝑎) =E𝑖(𝑠,𝑎)−∑
𝑛𝑗(𝑠,𝑎)

𝑛𝑐(𝑠,𝑎)𝑗𝜖𝐶
E𝑗(𝑠,𝑎) 

(6) 

where C is the cluster of player i and 𝑛𝐶(𝑠,𝑎)=∑ 𝑛𝑗(𝑠,𝑎𝑗𝜖𝐶 ). Drill-down analysis looks for game 

contexts where the player shows an unusually high or low added impact. For Taylor Hall, his 
highest added impact is in the first period, with even score and manpower, after his team has 
managed a reception in region 1. Among action types, the highest added impact stems from Block. 
Figure 10 compares Hall’s region distribution for Blocks with those of a random player from his 
cluster. In the specified game context, a Block has the most scoring impact in the right-wing 
offensive region 3.  For this game context, 50% of Taylor Hall’s Blocks occur in this high-impact 
region, compared to only 19.6% of Blocks for a random player from his cluster.  
 
For Erik Karlsson, highest added impact is in the third period, with even score and manpower, after 
his team has managed a pass in region 4. Figure 11 compares Karlsson’s region distribution for 
Receptions with those of a random player from his cluster. In the specified game context, a 
Reception has the most scoring impact in the left-wing offensive region 1.  For this game context, 
37.5% of Karlsson’s Receptions occur in this high-impact region, compared to only 14.6% of 
Receptions for a random player from his cluster. 
 

  
Figure 10. Drill-Down Analysis for Taylor Hall.  

He manages high-impact Blocks after a Reception by his 
team, in period 1 with even score/manpower.  

Figure 11. Drill-Down Analysis for Erik Karlsson.  
He manages high-impact Receptions after a Pass by his 

team, in period 3 with even score/manpower. 

 

7. Discussions 
 
In this paper we proposed a pure data-driven approach based on clustering and Markov decision 
process to support the way that scouts and managers evaluate players. This study showed how 
location information of the game events and player actions can be used to identify players with 
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similar styles and roles and rank them based on their impact on scoring the next goal. Our work 
supports apples-to-apples comparisons of similar players. Once the clusters are formed, a high-
resolution large-scale Markov game model quantifies the impact of all events on scoring the next 
goal. The aggregate impact of an action provides a principled effective way to assess player 
performance. Breaking down the aggregate impact allows the analyst to pinpoint the exact 
situations in which a player’s decisions tends to deviate-positively or negatively-from comparable 
players. Statistical modelling could further enhance drill-down analysis by identifying which 
features of the game context and of a player’s actions predict a high added-impact. 
 
Although considering the Scoring Impact as a metric for player performance assessment is coherent 
with the overall objective of the team, we have to emphasize that it cannot completely capture 
players’ strengths and skills. Scoring the next goal is a sophisticated process and is affected by many 
other factors such as the opposing goalie and the shot quality (which depends on where other 
players are when a shot happens). Therefore, the immediate extension of the model is to improve 
the shot quality model by first, incorporating the location of other players in the Markov process, 
and second, putting the goalie into the equation. In future work we will also research Markov 
decision processes for ice hockey that represent continuous spatial-temporal processes, rather than 
discretized time and space. Another important direction is modelling action distributions and state 
transitions at the level of individual teams, lines, and players.  
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Appendix 
 
A-1: Game Events and SPORTLOGiQ Dataset 

Table A- 1 lists all action types used in our study. For each action type, we list how many regions 
were learned by the clustering algorithms, and how often events of this type occurred. In the full 
dataset, the action types are classified further for a total of 43 different types. For example, for each 
dump-in, the data distinguish a chip-in from an actual dump-in. We used only the 13 main types, to 
reduce the number of parameters of the Markov model. Fewer parameters reduce the 
computational complexity, and can be more reliably estimated. 
 

 Table A- 1 Action Types Recorded in the 2015-2016 Season Data 
Action Types Description #Regions #Occurrences 

Block A block attempt on the puck’s trajectory 5 228,140 
Carry Controlled carry over a blue line or the red center line 8 257,312 
Check The player attempts to use his body to gain possession 7 79,321 

Dump-in The player sends the puck into the offensive zone 3 87,454 
Dump-out The defending player dumps the puck up the boards 3 97,951 

Goal The player scores a goal 1 6,061 
Lpr Loose puck recovery. The player recovered a free puck. 6 699,189 

Offside The player is over the offensive blue line ahead of the puck 3 7,059 
Pass The player attempts a pass to a teammate 7 926,012 

Puckprotection The player uses his body to protect the puck by the boards 7 107,270 
Reception The player receives a pass from a teammate 6 709,861 

Shot The player shoots on goal 4 140,872 
Shotagainst Shot was taken by the opposing team; attributed to goalie 3 35,627 

 
 
A-2: Examples of player clusters 
 

 Table A- 2. Top Eight Players per Cluster by Scoring Impact, standardized by 20 minutes of game played. 

Taylor Hall’s Cluster 

Name SI GP Goals Assists Passes TOI.pg Salary($M) 

Taylor Hall 4.775 81 26 39 320 19.204 6 

Pavel Datsyuk 4.675 60 14 33 159 19.655 7 

Evgeni Malkin 4.536 57 27 31 190 19.369 9.5 

Sidney Crosby 4.475 80 36 49 277 20.469 12 

Anze Kopitar 4.398 81 25 49 218 20.867 7.7 

Aleksander Barkov 4.396 57 22 31 138 19.430 0.925 

Ryan Getzlaf 4.394 67 12 50 261 19.506 9.25 

Jack Eichel 4.335 71 21 32 241 19.122 0.925 

https://www.nhl.com/news/fantasy-hockey-top-60-defensemen-rankings-update/
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Erik Karlsson’s Cluster 

Name SI GP Goals Assists Passes TOI.pg Salary($M) 

Erik Karlsson 6.093 77 15 66 303 28.975 7 

Kris Letang 4.888 71 15 51 168 26.945 7.25 

Alex Pietrangelo 4.831 73 7 30 202 26.305 6.5 

Tyson Barrie 4.696 78 14 36 163 23.200 3.2 

Brent Burns 4.637 75 25 48 204 25.864 5.76 

Drew Doughty 4.499 82 14 37 168 28.018 7.1 

John Klingberg  4.393 62 9 48 199 22.688 2.25 

Dustin Byfuglien 4.375 81 19 34 177 25.203 6 

 
 
A-3: Clustering Algorithm 

 
Affinity propagation 
Affinity propagation does not require specifying the number of clusters in advance. Instead, it 
automatically determines the number of clusters, based on a preference hyper-parameter p(i) for 
data point i; data points with higher preferences are more likely to be selected as cluster centers. 
Following the advice of Frey and Dueck [2007], we found that setting p(i) to 4 times the median of 
the similarity values for all data points led to a tractable number of clusters for both players and 
action regions.  
 
Action Regions 
It is possible to use three regions for the horizontal direction, corresponding to the defensive, 
neutral, and offensive zone. However, adding a 4th horizontal division led the clustering algorithm 
to produce more informative groupings, without producing too many clusters. Adding a 5th 
horizontal division produced essentially the same player clusters as the 3x4 division of Figure 1. 
 
An alternative approach to discretizing locations would be to apply nonnegative matrix 
factorization to a matrix of location transition counts [4]. The latter has the advantage that the 
learned regions capture not only where actions occur, but also where the game tends to move next. 
The disadvantage is higher computational complexity, and that arguably the resulting regions are 
less straightforward to interpret.  
 
A-4: Dynamic Programming 

Dynamic Programming [3] can be applied to compute the probability of an event for each game 
context. The main insight is that this probability can be computed efficiently for a fixed event 
horizon l, called the look-ahead. The probability of the event is then given by limit of the fixed-
horizon probability as the look-ahead increases without bounds. The fixed-event probability 
satisfies the following recurrence relation for each context: 
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𝑃(𝑇 𝑠𝑐𝑜𝑟𝑒𝑠 𝑛𝑒𝑥𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 0 𝑠𝑡𝑒𝑝𝑠|𝑠,𝑎)={
1 if 𝑎=𝑔𝑜𝑎𝑙(𝑇,𝑔𝑜𝑎𝑙𝑟𝑒𝑔)

0 o.w.
 

 

(7) 

 𝑃(𝑇 𝑠𝑐𝑜𝑟𝑒𝑠 𝑛𝑒𝑥𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑙+1 𝑠𝑡𝑒𝑝𝑠|𝑠,𝑎 and 𝑎≠𝑔𝑜𝑎𝑙(𝑇,𝑔𝑜𝑎𝑙𝑟𝑒𝑔) ) 

=∑ 𝑃(𝑇 𝑠𝑐𝑜𝑟𝑒𝑠 𝑛𝑒𝑥𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑙+1 𝑠𝑡𝑒𝑝𝑠|𝑠′,𝑎′) × 𝑃(𝑠′,𝑎′|𝑠,𝑎) 

𝑠′

 

 

(8) 

 
𝑃(𝑇 𝑠𝑐𝑜𝑟𝑒𝑠 𝑛𝑒𝑥𝑡 |𝑠,𝑎)=lim

𝑙→∞
𝑃(𝑇 𝑠𝑐𝑜𝑟𝑒𝑠 𝑛𝑒𝑥𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑙 𝑠𝑡𝑒𝑝𝑠)  

 
The probability that a team scores next can computed by applying the recurrence equations to each 
game context, for look-ahead 𝑙 =1,2,… until the conditional values in Equation (2) converge. Our 
convergence criterion was that the conditional value of no state changes by more than 1% from the 
previous look-ahead to the next. For the SPORTLOGiQ dataset, convergence occurred for 𝑙 = 14. 
This means that looking ahead more than 14 steps in possible game trajectories does not change 
the probability estimate of which team is more likely to score next. 
 
Dynamic programming is a key algorithm in the field of reinforcement learning [15], a subfield of 
machine learning. Our terminology relates to reinforcement learning concepts as follows. The 
probability of scoring the next goal is an instance of a “value function”. An action distribution is an 
instance of a “policy”.  
 

 


