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Abstract 

 
Drawing inspiration from the theory of production flexibility in manufacturing networks, we provide the 
first optimization-based analysis of the value of positional flexibility (the ability of a player to play 
multiple positions) for a major league baseball team in the presence of injury risk.  First, we develop 
novel statistical models to estimate (1) the likelihood and duration of player injuries during the regular 
season, and (2) fielding abilities at secondary fielding positions.  Next, we develop a robust optimization 
model to calculate the degradation in team performance due to injuries.  Finally, we apply this model to 
measure the difference in performance between a team with players who have positional flexibility and a 
team that does not.  We find that using 2012 rosters, flexibility was expected to create from 3% (White 
Sox) to 15% (Cubs) in value for each team, measured in runs above replacement.  In analyzing the 
results, we find that platoon advantages (e.g., having left-handed batters face right-handed pitchers) form 
an important component of flexibility.  As a secondary finding, based on our statistical analysis of 
injuries, we find that the likelihood of injury increases with age, but the duration of injury does not. 
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1   Introduction 
 
The most important decisions facing a sports team often relate to roster construction and playing time allocation.  
Such problems are complex and, in the context of trades or free agent acquisitions, must account for factors such as 
the existing team composition, salary cap/luxury tax implications, and short-term versus long-term team 
performance.  In baseball, the roster construction problem is further complicated by the fact that players can 
typically play multiple defensive positions; such positional swaps occur regularly, especially towards the end of close 
games when teams introduce pinch hitters/runners.  While positional flexibility–a player’s ability to play multiple 
positions–introduces additional dynamics into the roster construction problem, it can also contribute to a team’s 
competitive advantage.  A baseball team lacking positional flexibility may be reluctant to bring in a pinch hitter in 
the top half of the inning if there is not enough flexibility to field a decent defense in the bottom half of the inning. 
 
Although it provides a team with options, flexibility alone may not be enough.  A team needs flexibility and 
capability–that is, players with the ability to play multiple positions with skill.  Furthermore, the value of flexibility is 
not restricted to player substitutions in a game.  Teams with flexible players are also better equipped to deal with 
player injuries that occur randomly throughout the season.  Thus, flexibility is also related to a team’s depth, in terms 
of having skilled bench players who can fill in as needed. 
 
The manner of flexibility we focus on in this paper has been studied quite extensively in the manufacturing industry 
[1].  Consider a car manufacturer with multiple factories and multiple product lines.  Suppose each factory is capable 
of producing only one type of car and each car type can be produced in only one factory.  If there is a sudden loss 
of production capacity in a factory (e.g., machine breakdown), the company may be unable to produce enough cars 
to meet demand.  On the other hand, if the factories are flexible enough to produce multiple car types and each car 
type can be produced at multiple factories, then the company would be better able to respond to changes in supply 
or demand.  Baseball players are like factories producing innings-played at each position. 
 
In this paper, we borrow ideas from manufacturing flexibility and apply it to baseball roster construction.  We will 
use optimization models to evaluate the flexibility of Major League Baseball teams in a rigorous way and quantify 
the value of flexibility to each team using publicly available performance data.  Our specific contributions are: (1) we 
develop new analytical methods to estimate injury rates and the effect of changing the fielding position a player 
takes, (2) we develop a new metric based on a robust optimization model to assess roster vulnerabilities, and (3) we 
quantify the value of flexibility for Major League Baseball teams in 2012. 
 
2   Basic player-position assignment model 

 
First, we formulate a model that determines the assignment of players to positions in order to maximize the 
performance of the team.  Suppose player j plays position i with a “capability” value of vij.  The player’s capability 
represents the amount the player contributes to the team’s performance (e.g., runs) per game by playing that 
position.  A capability value of 0 represents a within-season, readily-available, replacement-level player.  Player j can 
play up to cj innings per season, and each position i must be assigned a player for up to di innings per season (all 
unassigned innings are assumed at replacement level).  Letting xij represent the fraction of all innings in a season that 
player j is assigned to position i, assume that a team has J players and there are I positions to be filled.  In this case, 
we can find the optimal assignment of players to positions by solving the following linear optimization model: 
 
  Maxx  ∑ ∑ 𝑣𝑖𝑗𝑥𝑖𝑗

𝐽
𝑗=1

𝐼
𝑖=1  

  Subject to  ∑ 𝑥𝑖𝑗 ≤ 𝑐𝑗 ,   for all 𝑗 = 1, … , 𝐽𝐼
𝑖=1      (1) 

    ∑ 𝑥𝑖𝑗 ≤ 𝑑𝑖 ,   for all 𝑖 = 1, … , 𝐼𝐽
𝑗=1   

    𝑥𝑖𝑗 ≥ 0, for all 𝑖 = 1, … , 𝐼, 𝑗 = 1, … , 𝐽 
 
As mentioned above, this is a standard assignment model that is commonly used in manufacturing to optimize the 
production of goods, with factories instead of players and products instead of positions.  To further tailor this 
model to baseball, we adjust the “demand” constraints to account for the handedness of the opposing pitcher.  That 
is, the number of innings that position i needs to be assigned a player, di, can be split into two quantities diR and diL 
to account for right- and left-handedness of the opposing pitcher, which results in two (structurally identical) 
demand constraints instead of one.  Additionally, to limit the number of innings a player can be assigned to play 
catcher, we add a cost of (1/0.85) to these assignments in the capacity constraint, which ensures that catchers are 
assigned to play at most 85% of the innings in a season.  This model has several implicit assumptions.  First, it 
assumes that capability values are additive across players.  This is a fairly common assumption in baseball research, 
but would be less appropriate in other sports.  Second, injuries (which determine the player “capacity” values cj) are 
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realized before the assignment of player-innings to positions.   Last, the timing in which players are injured during 
the season is controlled by the team.  This last assumption is much stronger but is necessary for model tractability. 
 
3   Robust player-position assignment model 
 
Not all injuries are equally devastating to a team.  Imagine if “nature” could consciously choose which players to 
injure and for what duration of time in order to maximally degrade a team’s performance.  By conducting such an 
experiment, we would be able to evaluate the value that flexibility provides to a team–a more flexible team will be 
better-equipped to respond, even if nature is consciously deciding which players to injure.  Thus, to measure the 
value of positional flexibility, we augment model (1) to allow an extra decision (by nature) to determine the worst-
case combination of player injuries.  This is our robust optimization model, which is shown as model (2).  For ease 
of exposition, we leave out the baseball-specific extensions. 
 
  Minc Maxx ∑ ∑ 𝑣𝑖𝑗𝑥𝑖𝑗

𝐽
𝑗=1

𝐼
𝑖=1  

  Subject to ∑ 𝑥𝑖𝑗 ≤ 𝑐𝑗 ,   for all 𝑗 = 1, … , 𝐽𝐼
𝑖=1  

    ∑ 𝑥𝑖𝑗 ≤ 𝑑𝑖 ,   for all 𝑖 = 1, … , 𝐼𝐽
𝑗=1       (2) 

    ∑ 𝑢𝑗−𝑐𝑗
𝜎𝑗

𝐽
𝑗=1 ≤ Γ 

    𝑙𝑗 ≤ 𝑐𝑗 ≤ 𝑢𝑗 , for all 𝑗 = 1, … , 𝐽 
    𝑥𝑖𝑗 ≥ 0, for all 𝑖 = 1, … , 𝐼, 𝑗 = 1, … , 𝐽 
 
In the robust model, nature is allowed to choose the player capacities first (the outer minimization over the decision 
variables cj) and then the player-position assignments are made afterwards (the inner maximization over the decision 
variables xij).  Recall that in model (1), the fixed capacity parameter cj incorporates an estimate of how many innings 
player j will miss due to injury.  The robust model considers a distribution of cj values (with standard deviation σj, 
upper bound uj and lower bound lj) corresponding to a range of injury scenarios.  Nature is allowed to injure players 
as long as the resulting cj values stay within the bounds defined by the third and fourth set of constraints in model 
(2)–an “uncertainty set” [2].  The value Γ represents the “budget of disruption” that nature is given.  It is used to 
couple injuries across players and limit the total amount of injuries a team can face–the larger the Γ, the more 
injuries nature can introduce.  We solve model (2) by transforming it into an equivalent mixed-integer linear 
optimization problem and using the commercial solver CPLEX. 
 
Model (2) allows us to evaluate the worst-case performance of a team in the presence of injury risk.  The result is 
worst-case because nature is allowed to decide which players to injure to minimize team performance.  Another 
useful quantity is average-case team performance, which we can measure by simulating injuries.  Specifically, we 
randomly generate many cj values from an injury distribution (whose construction is described in Section 4) and 
then solve the resulting model (1) with those cj values. 
  
To perform our computations, many of the parameters in the model need to be specified as inputs.  These 
parameters include the team rosters, which determine the scope of each model; the player capacity statistics (σj, uj, lj); 
and the player-position capabilities (vij).  In the next section, we describe how these data are collected and processed. 
 
4   Data 
 
To determine which players to include in each team’s optimization models, we used the 2012 opening day rosters, 
including players on the 25-man roster, 40-man roster, and major league disabled list (DL) at the beginning of the 
season.  The data was collected from [3].  Some teams may incorporate additional flexibility by using non-roster 
players signed to minor league contracts, but this is outside the scope of our study. 
 
To determine capacity statistics, we compared player-days on the DL to player-days on the major league roster from 
1999 (the earliest available DL data) to 2011 (the last year before our study).  Note that this should result in an 
optimistic estimate of player capacities, because short-term injuries often do not result in a stint on the DL.  To 
estimate the distribution of DL days, we considered the impact of player age and the primary position played 
through parameterized statistical modeling.  In the various models we tested, the age of the player consistently 
ranked as a statistically significant factor, whereas the player’s primary position did not.  In particular, age was a 
highly significant factor in determining the probability that a player would enter the DL in a given season.  We 
subsequently measure the duration the player spent on the DL as a percentage of the days spent on the major league 
roster.  One interesting finding is that conditioned on entering the DL, the total duration is positively-skewed, and 
not significantly impacted by age.  This leads us to the two-stage statistical model described in Equations (3) and (4), 
where a DL occurrence is Bernoulli distributed and its duration is log-normally distributed.  In Equation (3), we let 
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𝑝𝑗𝑡 ∈ {0,1} indicate the probability player j joins the DL in season t and 𝑥𝑗𝑡
age equal the player’s age in days on July 1 

of season t.  In Equation (4), we let 𝑦𝑗𝑡 ∈ (0,1] indicate the proportion of the season spent on the DL.  In our 
training set, we exclude players who spent less than 80 days on the major league roster in a season to protect against 
selection biases (e.g., young players sent back to the minors after experiencing an injury). 
 

ln �
𝑝𝑗𝑡

1−𝑝𝑗𝑡
� = 𝛽0 + 𝛽𝑎𝑔𝑒𝑥𝑗𝑡

age     (3) 

ln�𝑦𝑗𝑡� = 𝛽0 + 𝜖𝑗𝑡 , 𝜖𝑗𝑡~𝒩(0,𝜎2)    (4)
   

Thus, the first model estimates the probability of going on the DL at least once in a season, and the second 
estimates the total duration of DL stints (as a percentage of the season).  We estimate these models using the R 
functions glm and lm, respectively.  The corresponding parameter estimates and statistical tests are provided in the 
Appendix, along with a plot comparing the two-stage model estimates to the training data. 
 
Within the assignment model, the capability of a player at a position (vij) is composed of three parts: 1) the player’s 
expected offensive contribution in runs above average per game, 2) a position-specific, replacement-level adjustment 
per game, and 3) the player’s expected defensive contribution in runs above average per game.  For the offensive 
contributions, we use Dan Szymborski’s ZiPs projections for each team [4], which we convert to runs per game 
using linear weights [5].  We used ZiPs projections rather than any other projection system because the ZiPs 
projections covered a larger number of the roster players considered in our study.  The fact that ZiPs projections are 
broken down by opposing handedness and outcome also makes them easy to convert into the required runs per 
game metrics.  For positional adjustments we rely on the values used by FanGraphs and developed by Tom Tango 
[6].  To adjust these for in-season replacements, which we assume are less readily available, we set the replacement 
level at each position (i.e., vij equal to zero) lower by an additional 10 runs per season.  Thus, for example, instead of 
applying a position adjustment of +2.5 runs per season for a second baseman, we apply an adjustment of +12.5 runs 
per season. 
 
For defensive capabilities, we start with the UZR/150 statistic provided by FanGraphs [7].  The statistic is intended 
to normalize defensive contributions by position to roughly correspond to the number of opportunities expected in 
150 games of playing time.  The statistic is not calculated for catchers, so for the purposes of our study, we assume 
that all catchers have a UZR/150 equal to zero.  The most challenging data requirement for our model is the need to 
provide expected defensive contributions for each player at each position he could play, even if he has never actually 
done so.  Defensive statistics are known to be quite noisy, often requiring multiple years of data to stabilize.  In 
order to address this instability, especially for player-position combinations with few innings played, we assume that 
a player’s defensive capabilities across all positions are drawn from a multivariate-normal, population distribution.  
That is, we assume that 1) there is a normal distribution of ability at each position across all major league players, 
and 2) there is a correlation structure that describes the relationship between abilities at one position and any other.  
The model is described in Equations (5).  For the dependent variable, we let 𝑦𝑖𝑗𝑡  represent the UZR/150 for player j 
at position i in season t, and we weight each observation by 𝑛𝑖𝑗𝑡 , the number of innings played at the position.  In 
addition to the player’s age, this model incorporates the following features: 

• 𝑥𝑗𝑡base : factor variable indicating the base position for the player–the position most frequently played during 
the prior 4 seasons, or the ZiPs position for players with no prior major league experience, 

• 𝑥𝑖𝑗𝑡
pos : factor variable equal to the position i for which the UZR / 150 is being estimated, 

• 𝑥𝑖𝑗𝑡
left × pos : factor variable equal to the position for players that throw left-handed, and a default value for 

right-handed throwers, 
• 𝑥𝑖𝑗𝑡

𝑔base  × 𝑔pos : factor variable indicating the fielding group transition being made; positions are categorized 
into three groups–infield, outfield, or catcher/first-base, 

• 𝑥𝑖𝑗𝑡min : (0, 1) variable indicating if player i has played position j at least 9 innings during the prior 4 seasons,  
• 𝑥𝑖𝑗𝑡

exp : variable indicating the natural-logarithm of the innings in excess of 90 played at the position during 
the prior 4 seasons, and equal to 0 if fewer than 90 innings have been played. 
 

𝑦𝑖𝑗𝑡 = 𝛽𝑥𝑗𝑡base
base + 𝛽𝑥𝑖𝑗𝑡

pos
pos + 𝛽

𝑥𝑖𝑗𝑡
𝑔base  × 𝑔pos
𝑔base  × 𝑔pos + 𝛽

𝑥𝑖𝑗𝑡
left × pos

left × pos + ∑ �𝛽𝑔
age𝑥𝑗𝑡

age + 𝛽𝑔min𝑥𝑖𝑗𝑡min +  𝛽𝑔
exp𝑥𝑖𝑗𝑡

exp�𝑔 + 𝛼𝑖𝑗 + 𝜖𝑖𝑗𝑡 ,

𝜖𝑖𝑗𝑡~𝒩�0,
𝜎𝑗
2

𝑛𝑖𝑗𝑡
� ,

𝛼𝑗~𝒩(0,𝚺)

 (5) 
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Note that in Equations (5) the variance on the error term 𝜖𝑖𝑗𝑡 is inversely proportional to the number of innings 
played at the position whereas the population distribution has a variance-covariance matrix 𝚺 that is independent of 
the innings played.  Thus, in addition to providing the correlations we seek, this implicitly regularizes the data; that 
is, the more innings a player has played, the further his UZR/150 estimates can deviate from the population mean.  
In order to address selection biases that otherwise skew the results, we subtract 5 runs (or half a win) from the 
observed UZR/150 values for players in the training data who have no prior experience at a position (𝑥𝑖𝑗𝑡min = 0).  
We estimate this model using lmer, an R package for incorporating random effects into generalized linear regression, 
and the parameter estimates are provided in the Appendix.  Table 10 in the Appendix lists the top 10 players at each 
position (excluding catcher) and their corresponding UZR/150 estimates based on our model. 
  
5   Data analysis and results 
 
In this section, we consider multiple scenarios to demonstrate the power of our approach and the metrics that it 
supports.  In each case, we compare an assignment with the full set of capabilities (full) to one with a subset of these 
capabilities representing a team with no flexibility or depth (no-flex).  To determine the no-flex capabilities, we first 
assign players to positions using Model (1) without injuries and without considering splits by opposing pitcher 
handedness.  That is, each player is given a single capability value at each position which assumes the player faces a 
left-handed pitcher 29.8% of the time (the overall split from the 2012 season).  This results in the assignment of at 
most two players to catcher and one player to each other position.  To build the no-flex capabilities matrix, we zero 
out all capabilities corresponding to positions the player was not assigned to.  For example, in the combined model, 
Matt Kemp is assigned to play centerfield (CF).  Thus in the no-flex capabilities matrix, his vij values will be set equal 
to zero for all i that do not correspond to CF. 
  
In the first scenario, we evaluate no-injury assignments with and without flexibility.  This corresponds to solving 
Model (1) with two capability matrices (full and no-flex) for each team.  In addition to the total runs above 
replacement (RAR), Table 1 lists the percentage gain in performance based on incorporating flexibility. 

 
Table 1: The value of flexibility in the absence of injuries 

 
Team No flex 

(RAR) 
W/flex 
(RAR) 

Value of 
flex (%) 

Team No flex 
(RAR) 

W/flex 
(RAR) 

Value of 
flex (%) 

Team No flex 
(RAR) 

W/flex 
(RAR) 

Value of 
flex (%) 

LAD 171 182 5.8 MIN 198 203 2.4 STL 241 243 1.0 
SDP 175 184 4.9 MIL 235 241 2.3 TEX 332 335 1.0 
CHC 198 208 4.5 BOS 353 361 2.2 KC 211 212 0.5 
PHI 270 281 3.9 WAS 211 216 2.1 BAL 217 218 0.5 
NYM 187 194 3.3 TOR 281 286 1.7 TBR 280 281 0.4 
PIT 187 193 3.3 DET 254 258 1.6 CIN 282 282 0.1 
CLE 220 228 3.2 SEA 143 145 1.3 MIA 260 260 0.0 
OAK 154 159 3.0 CWS 201 203 1.1 COL 303 303 0.0 
SFG 212 218 2.8 ARI 252 255 1.1 NYY 340 340 0.0 
LAA 266 273 2.7 ATL 226 229 1.0 HOU 166 166 0.0 

 
In the no-injury case, flexibility provides value by allowing teams to exploit platoon advantages (i.e., left-handed 
batters facing right-handed pitchers).  In Table 2 we illustrate this fact by comparing the position assignments for 
the Los Angeles Dodgers (LAD), the team with the highest value of flexibility in the no-injury case.  We exclude the 
players with no assignments in either model.  Full flexibility allows the Dodgers to introduce left-right platoons at 
1B, 2B, and RF.  Notice that in the no-flex case, each player is assigned one position and each position is assigned 
one player (except for catcher due to the 85% assumption stated earlier). 
 

Table 2: Position assignment comparison for LAD with and without flexibility in the absence of injuries. 
The color indicates the proportion of time each player is assigned to each position against left-handed 

pitchers (green) and right-handed pitchers (red). 
 

 No flexibility RAR With flexibility RAR 
A.J. Ellis C (0.25/ 0.60) 17.9 C (0.25/ 0.60) 29.4 
T. Federowicz C (0.04/ 0.11) 1.4 C (0.04) 4.7 
J. Loney 1B (0.30/0.70) 10.5 1B (0.70) 12.8 
A. Kennedy 2B (0.30/0.70) 13.0 2B (0.70) 17.4 
J. Uribe 3B (0.30/0.70) 22.9 3B (0.30/0.70) 14.6 
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 No flexibility RAR With flexibility RAR 
J. Hairston SS (0.30/0.70) 18.5 SS (0.30/0.70) 28.9 
A. Ethier LF (0.30/0.70) 23.6 LF (0.70) 20.7 
M. Kemp CF (0.30/0.70) 38.0 CF (0.30/0.70) 10.1 
T. Gwynn RF (0.30/0.70) 25.5 RF (0.70); LF (0.30) 15.4 
M. Treanor   C (0.11) 2.3 
J. Rivera   1B (0.30) 9.6 
M. Ellis   2B (0.30) 7.1 
J. Sands   RF (0.30) 5.8 

 
In the second scenario, we simulate injuries by sampling player capacities based on the injury models described in 
Section 4.  Then, we solve Model (1) for both the full and no-flex cases using the sampled cj values to determine the 
assignments with and without flexibility, respectively.  This procedure is performed 250 times for each team and set 
of capabilities, and the results are averaged across these iterations.  A comparison of the averaged results (full vs. no-
flex) is provided in Table 3. 

 
Table 3: The value of flexibility in the presence of simulated injuries 

 
Team No flex 

(RAR) 
W/flex 
(RAR) 

Value of 
flex (%) 

Team No flex 
(RAR) 

W/flex 
(RAR) 

Value of 
flex (%) 

Team No flex 
(RAR) 

W/flex 
(RAR) 

Value of 
flex (%) 

CHC 167 197 15.0 PIT 158 175 9.9 WAS 179 191 6.4 
LAD 143 164 12.8 ARI 214 237 9.9 DET 214 227 5.5 
NYM 155 176 11.8 STL 199 220 9.9 NYY 283 299 5.2 
OAK 130 147 11.7 CIN 236 261 9.5 SEA 124 131 5.1 
PHI 223 253 11.7 LAA 224 245 8.5 KC 181 190 4.9 
SDP 150 170 11.4 COL 252 273 7.9 ATL 192 202 4.8 
SFG 175 196 10.8 TEX 276 299 7.5 TBR 235 247 4.8 
CLE 185 207 10.7 MIA 217 234 7.5 BAL 181 189 4.4 
MIL 200 224 10.4 TOR 239 257 7.3 HOU 141 146 3.5 
BOS 295 327 10.0 MIN 168 180 6.7 CWS 171 177 3.4 

 
As with the previous comparison, there is significant variation in the value of flexibility across teams, ranging from 
3.4% for the Chicago White Sox (CWS) to 15.0% for the Chicago Cubs (CHC).  Table 4 compares the position 
assignments for CHC with and without flexibility.  As above, when there is no flexibility, each player is assigned one 
position and each position is assigned one player (except catcher).  Under no flexibility, the total playing time 
assigned to each position is less than one, with the excess innings valued at the replacement level.   As with the 
Dodgers, the no-injuries model suggests left-right platoons for the Cubs at 3 positions – 2B, LF, and CF.  These 
platoons persist in the presence of simulated injuries as seen in Table 4.  Additionally, the Cubs have a relatively 
balanced starting lineup with a deep bench, helping to mitigate the impact of an injury to any player.  For example, 
at 3B against a right-handed pitcher, the model suggests that the Cubs could play Stewart (+0.15 runs / game) or 
LaHair (+0.14 runs / game).  Although LaHair has never played 3B in the majors, our fielding model estimated his 
3B skill at -14.5 UZR / 150, a few runs below the worst defensive third-basemen – Ty Wiggins with a -12.4 UZR / 
150 and Chris Johnson with a -11.6 UZR / 150. 
  

Table 4: Position assignment comparison for CHC with and without flexibility in the presence of 
simulated injuries.  The color indicates the proportion of time each player is assigned to each position 

against left-handed pitchers (green) and right-handed pitchers (red). 
 

 No flexibility RAR With flexibility RAR 
G. Soto C (0.21/0.49) 28.8 C (0.21/0.50) 29.4 
S. Clevenger C (0.08/0.19) 6.1 C (0.01/0.18) 4.7 
A. Rizzo 1B (0.24/0.57) 12.4 1B (0.25/0.59) 12.8 
B. DeWitt 2B (0.25/0.58) 16.7 2B (0.04/0.58); 3B (0.21/0.02) 17.4 
I. Stewart 3B (0.25/0.60) 18.6 3B (0.08/0.46); 2B (0.08); SS (0.05) 14.6 
S. Castro SS (0.26/0.61) 28.4 SS (0.26/0.60) 28.9 
D. DeJesus LF (0.24/0.56) 24.5 LF (0.01/0.57); RF (0.07/0.02) 20.7 
D. Sappelt CF (0.24/0.56) 15.2 CF (0.25/0.24) 10.1 
M. Byrd RF (0.24/0.56) 15.6 RF (0.22/0.54); CF (0.01/0.01) 15.4 
W. Castillo   C (0.08/0.02) 2.3 
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 No flexibility RAR With flexibility RAR 
A. Soriano   LF (0.21/0.12) 9.6 
B. LaHair   3B (0.22); 1B (0.01/0.10); RF (0.03) 7.1 
J. Baker   2B (0.25); RF (0.01) 5.8 
L. Valbuena   2B (0.04) 0.5 
D. Barney   SS (0.04/0.04); 2B (0.01/0.01) 1.5 
R. Johnson   LF (0.08); CF (0.03) 3.2 
T. Campana   CF (0.44); RF (0.11); LF (0.01) 12.7 

 
In the third scenario, we evaluate player-position assignments with and without flexibility when nature is allowed to 
determine the worst-case combination of player injuries (i.e., Model (2)).  In the formulation of the robust 
assignment model, Γ represents the sum of the standard deviations of lost capacity across the team.  For a single 
value of Γ, we can perform the same comparisons as above to determine the value of flexibility with respect to a 
specific level of disruption.  Alternatively, we can define the team’s protection level (PL) with respect a certain loss 
level as the minimum value of Γ that is required to force the team to incur such a loss.  For example, we would 
define a team’s 5% PL as the smallest value of Γ that results in a 5% loss in RAR from the no-injury assignment.  A 
team that is more robust to injuries would thus have a higher PL value.  In Table 5, we list the 5% and 10% PL 
values for each team1. 
 

Table 5: Robust 5% and 10% protection levels  
 

Team 5% PL 10% PL Team 5% PL 10% PL Team 5% PL 10% PL 
OAK 2.70 5.02 STL 1.34 2.76 COL 0.99 1.97 
MIL 1.93 3.89 LAD 1.31 2.77 HOU 0.98 1.97 
CHC 1.82 4.16 ATL 1.19 2.41 CIN 0.95 1.90 
PIT 1.53 3.25 TEX 1.16 2.33 SFG 0.94 1.89 
SDP 1.52 3.25 CLE 1.09 2.19 TOR 0.94 1.88 
ARI 1.49 3.37 PHI 1.08 2.17 DET 0.86 1.72 
BOS 1.43 2.92 CWS 1.04 2.09 LAA 0.83 1.66 
NYY 1.43 2.97 KC 1.04 2.09 SEA 0.80 1.60 
MIN 1.40 2.77 BAL 1.02 2.03 TBR 0.72 1.45 
NYM 1.38 2.81 MIA 1.00 2.00 WAS 0.66 1.31 

 
According to this metric, the Nationals’ and Rays’ rosters are the least robust to injuries.  In each case, the lack of 
robustness is due to the presence of a superstar third-baseman (Ryan Zimmerman and Evan Longoria, respectively), 
whose injury would result in approximately replacement-level players moving into the lineup (Danny Espinosa / 
Adam LaRoche for the Nationals and Jeff Keppinger / Elliot Johnson for the Rays).  The Athletics’s roster is the 
most robust according to this metric.  This is in part based on the balance of the lineup; Yoenis Cespedes is 
estimated to be the most productive player, at 29 RAR for the season.  Additionally, if Cespedes is injured, the 
players pushed into the lineup as a result (Michael Taylor / Kila Ka'aihue) would be able to cover almost two-thirds 
of the resulting loss. 

 
6   Conclusion and extensions 
 
In this paper we developed a new and highly-tractable optimization-based approach for evaluating baseball rosters in 
the presence of uncertainty due to player injury risks.  Using this approach, we calculated the value of flexibility in 
different contexts and compared these values across teams.  We believe our novel identification of the variation in 
flexibility and resulting value represents an under-explored opportunity for teams to improve their rosters. 
 
There are multiple directions for future work.  This paper focused on measuring the flexibility of a team, but the 
same optimization model can be adapted to quantify the value of flexibility each player provides his team.  The 
injury model can be augmented with player-specific injury histories.  Minor league position experience can also be 
incorporated into the fielding model.  A team interested in building flexibility may consider spring training positional 
experiments, the results of which can be incorporated into the optimization model to determine the added benefit 
of the developed flexibility. 
 
 
                                                           
1 PL values are calculated by iteratively solving Model (2), increasing Γ by 0.25 at each step, and applying a linear 
interpolation of the Γ values that bound the specified loss. 
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9   Appendix 
 
Parameter estimates for the player capacity model 
 

Table 6: DL occurrence coefficients (equation (3)) 
 

 Estimate  Std. Error z value Pr(>|z|)     
Intercept -1.195e+00 1.414e-01   -8.452   < 2e-16 
AgeDays       6.885e-05 1.298e-05    5.305  1.13e-07 

 
Table 7: DL duration coefficients (equation (4)) 

 
 Estimate  Std. Error t value Pr(>|t|)     
Intercept -1.25255     0.01271   -98.51    < 2e-16 

 
Validation of injury model 
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Figure 1: The relationship between DL rates and player age.   
 

In Figure 1, the lines plot the two-stage model estimates (at the mean, 90th, and 95th percentiles) and the circles plot 
the empirical averages for the player-seasons within the training data matching the corresponding age bucket (i.e., 
age +/- 0.5 years).  Our two-stage model appears to be more conservative regarding the tails of the injury 
distribution, but matches the shape of the data quite well overall. 
 
Parameter estimates for the multivariate normal model of player defensive capabilities 
 

Table 8: Fixed effects coefficients 
 

 Estimate  Std. Error  t value 
BasePosition1B+C                 -5.486e+00 2.053e-01   -26.72 
BasePosition2B                 -7.095e-01   2.641e-01  -2.69 
BasePosition3B           -2.714e-01   2.608e-01    -1.04 
BasePositionCF         5.443e+00  2.442e-01    22.28 
BasePositionLF        -5.516e-01  2.415e-01  -2.28 
BasePositionRF            1.241e-01 2.425e-01 0.51 
BasePositionSS         2.128e+00  2.649e-01   8.03 
Position2B                    -7.437e+00  3.003e-01   -24.77 
Position3B            -8.107e+00  2.968e-01   -27.32 
PositionCF                   1.154e+01 3.029e-01 38.08 
PositionLF                     1.859e+01 3.036e-01 61.24 
PositionRF                      1.851e+01  3.040e-01   60.91 
PositionSS                     -1.011e+01   3.010e-01  -33.59 
GroupTransitionIF_1B              -6.455e+00   1.829e-01 -35.30 
GroupTransitionIF_OF              2.592e+00 2.230e-01  11.62 
GroupTransitionOF_1B           -5.486e+00  1.569e-01 -34.97 
GroupTransitionOF_IF           -3.475e+00  2.443e-01  -14.22 
ThrowsPositionLeftL_1B           1.420e+00   6.413e-02    22.15 
ThrowsPositionLeftL_CF            -1.425e+00   8.825e-02   -16.14 
ThrowsPositionLeftL_LF             2.338e+00   8.987e-02  26.01 
ThrowsPositionLeftL_RF            -1.104e+00 9.814e-02  -11.25 
PositionGroup1B:HasExperience     6.349e+00  1.134e-01   55.98 
PositionGroupIF:HasExperience      6.626e+00  8.509e-02    77.88 
PositionGroupOF:HasExperience     8.319e+00   7.455e-02   111.60 
PositionGroup1B:ExcessExperience   2.042e-02   9.007e-03     2.27 
PositionGroupIF:ExcessExperience   4.320e-01   5.841e-03   73.97 
PositionGroupOF:ExcessExperience  4.124e-02   6.479e-03     6.36 
PositionGroup1B:AgeDays        -1.060e-04   1.708e-05  -6.21 
PositionGroupIF:AgeDays       -1.848e-04   1.324e-05   -13.96 
PositionGroupOF:AgeDays       -2.499e-03   1.637e-05 -152.66 

 
Table 9: Random effects variance-covariance matrix 

 
 1B 2B 3B CF LF RF SS 
1B 0.05645 0.04139   0.08828  0.07053   0.00236 0.05221  0.08168 
2B 0.04139  0.08392   0.10947  0.07049   0.04122  0.13485  0.06527 
3B 0.08828  0.10947   0.20168  0.06445  -0.03412  0.10595  0.12832 
CF 0.07053  0.07049   0.06445  0.23878   0.18258  0.23105  0.11307 
LF 0.00236  0.04122  -0.03412  0.18258   0.30420  0.20186  0.00011 
RF 0.05221  0.13485   0.10595  0.23105   0.20186  0.34971  0.09855 
SS 0.08168  0.06527   0.12832  0.11307   0.00011  0.09855  0.12305 

 
Example output from the multivariate normal model of player defensive capabilities 
 

Table 10: Top 10 defensive players in terms of UZR/150 at each position 
 

Rank First base Second base Third base Shortstop 
1 Mark Kotsay Chase Utley Nick Punto Nick Punto 
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2 Casey Kotchman Nick Punto Evan Longoria Adam Everett 
3 Albert Pujols Placido Polanco Adrian Beltre J.J. Hardy 
4 Ike Davis John McDonald Craig Counsell Brendan Ryan 
5 Kevin Youkilis Ben Zobrist Scott Rolen Cesar Izturis 
6 Daric Barton Dustin Pedroia Placido Polanco Elvis Andrus 
7 Chase Utley Craig Counsell Adam Everett John McDonald 
8 Andruw Jones Brandon Phillips Jack Hannahan Clint Barmes 
9 Mark Teixeira Mark Ellis Ryan Zimmerman Paul Janish 
10 Justin Morneau Juan Uribe John McDonald Craig Counsell 
Rank Left field Center field Right field 
1 Brett Gardner Franklin Gutierrez Brett Carroll 
2 Tony Campana Tony Gwynn Tony Gwynn 
3 Nyjer Morgan Peter Bourjos Franklin Gutierrez 
4 Tony Gwynn Carlos Gomez Andres Torres 
5 Andres Torres Brett Carroll Tony Campana 
6 Carlos Gomez Nyjer Morgan Nyjer Morgan 
7 Scott Cousins Tony Campana Carlos Gomez 
8 Jacoby Ellsbury Andres Torres Ben Zobrist 
9 Brett Carroll Brett Gardner Ben Revere 
10 Reed Johnson Ben Revere Scott Cousins 

 
Our model suggests that strong defensive players will be defensively capable at multiple positions.  For example, 
Nick Punto, a shortstop, also shows up as a top 10 second and third baseman.  Similarly, many of the top 10 center 
fielders also place in the top 10 in both left and right field. 
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